
http://www.elsevier.com/locate/jat
Journal of Approximation Theory 125 (2003) 169–189

On a class of Sobolev scalar products
in the polynomials

Leonel Roberta,� and Luis Santiagob

aDepartment of Mathematics, University of Toronto, 100 St. George Street, Toronto, Canada M5S 3G3
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Abstract

This paper discusses Sobolev orthogonal polynomials for a class of scalar products that

contains the sequentially dominated products introduced by Lagomasino and Pijeira. We

prove asymptotics for Markov type functions associated to the Sobolev scalar product and an

extension of Widom’s Theorem on the location of the zeroes of the orthogonal polynomials. In

the case of measures supported in the real line, we obtain results related to the determinacy of

the Sobolev moment problem and the completeness of the polynomials in a suitably defined

weighted Sobolev space.
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0. Introduction

This paper discusses several properties of the sequence of orthonormal
polynomials with respect to a Sobolev scalar product of the form

/p; qSS ¼
Z
O0

pðzÞqðzÞ dm0 þ
Z
O1

p0ðzÞq0ðzÞ dm1; ð1Þ
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where m0 and m1 are positive Borel measures in the complex plane with supports O0

and O1; respectively.
The analysis is restricted to the class of scalar products that satisfy condition (5)

stated in Section 1. This class includes the sequentially dominated products
introduced in [8].

We associate to the sequence of orthonormal polynomials a closed operator D
analogous to the Jacobi operator in the case of the standard orthogonality in the real
line. Then from the properties of the scalar product we obtain information about the
spectrum of D: This is done in Section 1.

In Section 2 we prove asymptotics and zero location for the orthonormal
polynomials (Theorems 4 and 5). These results are derived from the convergence of
the finite sections method applied to the operator D: Here we apply the results
proven in [10] on Hessenberg matrices.

Section 3 discusses the case when the measures m0 and m1 are supported in the real
line. We relate the concept of determinate Hessenberg matrix introduced in [10] to
the Sobolev moment problem. We also prove the density of the polynomials in the
weighted Sobolev space associated to the scalar product (1).

Besides [9,10], our references were [7,8]. In many ways, this paper continues the
work of [8], improving some of its results.

1. Preliminaries

Let /�; �S : C½z	 
 C½z	-C be a scalar product in the linear space C½z	 of
polynomials with complex coefficients. Applying the Gram–Schmidt process to the

basis fzngNn¼0 we can find a sequence fpnðzÞgNn¼0 of orthonormal polynomials with

respect to this scalar product. Since these polynomials form a basis of C½z	; zpnðzÞ
can be written as a linear combination of piðzÞ; i ¼ 0;y; n þ 1; for every n . Thus we
have a recurrence relation

zpnðzÞ ¼
Xnþ1

i¼0

dn;ipiðzÞ:

Define the infinite matrix D ¼ ðdi;jÞNi;j¼0: This recurrence relation can be written like

Dp ¼ zp; ð2Þ

where p ¼ ðp0; p1;yÞt: Notice that D is a lower Hessenberg matrix; that is, di;j ¼ 0

for j4i þ 1:
Let l2 denote the Hilbert space of infinite column vectors with square summable

entries and C0Cl2 the subspace of vectors with a finite number of nonzero entries.
Associated to the matrix D; we define the operator D with domain domainðDÞ ¼
fxAl2 : DxAl2g and such that Dx ¼ Dx: It is proven in [10] that D is a closed
operator. We denote by sðDÞ; rðDÞ; and Rðz;DÞ; the spectrum, the resolvent set,
and the resolvent function of D; respectively. We use caligraphic fonts to denote the
operator associated to a Hessenberg matrix.
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Define the set

*GðDÞ ¼ f/Dx; xS : jjxjj ¼ 1; xAC0g:

For a vector xAC0; x ¼ ðx0; x1;yÞt; we write pxðzÞ ¼
P

ixipiðzÞ: In this notation the

orthonormal basis fpnðzÞgNn¼0 is implicitly assumed, but this will not lead to

confusion. From the definition of D we get that /Den; emS ¼ /zpm; pnS: Taking
linear combinations this yields

/D %y; %xS ¼ /zpx; pyS x; yAC0: ð3Þ

Thus, one sees that the set *GðDÞ is just the numerical range of the operator
Tz : C½z	-C½z	; Tzp ¼ zp; of multiplication by z:

Example 1. Consider the scalar product

/p; qS ¼
Z
O

pðzÞqðzÞ dm;

where m is a positive measure supported in OCC; with infinite support and finite
moments. We have

*GðDÞ ¼ flAC : l ¼ /zp; pS; with jjpjj ¼ 1g: ð4Þ

Let aAðCoðOÞÞc where CoðOÞ is the closed convex hull of O: Choose oAC such that
joj ¼ 1 and Rðoðz � aÞÞ4e40 for every zAO and let jjpjj ¼ 1: Then

j/zp; pS� aj ¼ /ðz � aÞp; pSj j ¼
Z
O
ðz � aÞjpðzÞj2 dm

����
����

¼
Z
O
oðz � aÞjpðzÞj2 dm

����
����4ejjpjj2 ¼ e40:

This proves that *GðDÞCCoðOÞ:

1.1. Sobolev products

Let m0; m1 be positive measures in the complex plane with finite moments, and such
that at least one of the sets O0 ¼ supp m0; O1 ¼ supp m1 is infinite. With these
conditions Eq. (1) defines a scalar product in C½z	: We will consider additionally thatR

dm0 ¼ 1; so that one has /1; 1SS ¼ 1: For the rest of this section fpngNn¼0 denotes

the sequence of orthonormal polynomials with respect to /�; �SS and D denotes the
Hessenberg matrix associated to it. We denote by jj � jjS the norm in C½z	 induced by

(1); we write jj � jjS;m0;m1
when we want to make explicit reference to the measures m0; m1:

Lagomasino and Pijeira introduce in [8] the concept of sequentially dominated

measures, this being the case when

(i) m1 is absolutely continuous with respect to m0:
(ii) dm1=dm0ALNðm0Þ:
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They base many of their results in this concept, in particular they show that D is
bounded whenever m0; m1 are sequentially dominated and O0; O1 are compact subsets
of the complex plane.

Instead of those assumptions, we will consider here the following condition on m0

and m1 Z
O1

jpðzÞj2 dm1

� �1=2

¼ jjpjjm1
pMjjpjjS ð5Þ

for every polynomial pAC½z	 and some positive constant M:
This condition is equivalent to

jjpjjS;m0;m1
pjjpjjS;m0þm1;m1

pðM2 þ 1Þ1=2jjpjjS;m0;m1
:

Thus, (5) can be restated saying that the norms jj � jjS;m0;m1
and jj � jjS;m0þm1;m1

are

equivalent. Notice that the measures m0 þ m1; m1 are sequentially dominated.
Sequentially dominated measures satisfy (5), but they are far from being all, as the

following example shows.

Example 2. Let dm1 ¼ o dx be a positive measure, absolutely continuous with
respect to the Lebesgue measure, supported in ½�1; 1	 and such that
1=oAL1ð½�1; 1	; dxÞ: Let m0 be an arbitrary measure such that m0ð½�1; 1	Þa0: Let
us prove that these measures satisfy condition (5).

Let pðzÞAC½z	 with jjpjjS ¼ 1: Since
R
jpj2 dm0p1; there exists x0A½�1; 1	 such that

jpðx0Þjpðm0ð½�1; 1	ÞÞ�1=2: For every xA½�1; 1	; we have

pðxÞ ¼ pðx0Þ þ
Z x

x0

p0ðtÞ dt;

and Z x

x0

p0ðtÞ dt

����
����p

Z 1

�1

jp0ðtÞj dt ¼
Z 1

�1

jp0ðtÞj 1

oðtÞ dm1

p
Z 1

�1

jp0ðtÞj2 dm1

� �1=2 Z 1

�1

1

oðtÞ2
dm1

 !1=2

p
Z 1

�1

1

oðtÞ dt

� �1=2

:

Thus, jpðxÞjpðm0ð½�1; 1	ÞÞ�1=2 þ ð
R 1

�1
ðoðtÞÞ�1

dtÞ1=2; and (5) clearly follows from

this.

The next theorem gives a description of the set *GðDÞ in terms of O0 and O1:

Theorem 1. Let m0; m1 satisfy condition (5). Then we have

(i) *GðDÞCfz : dðz;CoðO0,O1ÞÞpMg:
(ii) D� zI is surjective for zAðO0,O1Þc:
(iii) If O0 and O1 are bounded sets of the complex plane then D is a bounded

operator.
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Proof. Let us write

/p; qS0 ¼
Z
O0

p %q dm0; /p; qS1 ¼
Z
O1

p %q dm1:

Taking into account (4), we need to estimate /zp; pSS assuming that jjpjjS ¼ 1:

/zp; pSS ¼/zp; pS0 þ/zp0; p0S1 þ
Z
O1

pp0 dm1

¼/p; pS0

/zp; pS0

/p; pS0

� �
þ/p0; p0S1

/zp0; p0S1

/p0; p0S1

� �
þ
Z
O1

pp0 dm1:

Since /p; pS0 þ/p0; p0S1 ¼ 1 the first two summands of the last equality form a

convex combination of elements in *Gð/�; �S0Þ and *Gð/�; �S1Þ: Using (5), the last
summand admits the estimate

Z
O1

p0
%p dm1

����
����
2

p
Z
O1

jpj2 dm1

Z
O1

jp0j2 dm1pM2:

We know from Example 1 that *Gð/�; �S0ÞCCoðO0Þ and *Gð/�; �S1ÞCCoðO1Þ: This
completes the proof of (i).

(ii) Let zAðO0,O1Þc and consider the infinite matrix

X ðzÞ ¼ piðtÞ
z � t

; pjðtÞ

 �

t

� �
i;j

:

This matrix satisfies the identity ðzI � DÞXðzÞ ¼ I : Thus, it is enough to prove that
XðzÞ is a matrix representing a bounded operator of l2 and (ii) will follow from this.

Let x; yAC0 such that jjxjj ¼ jjyjj ¼ 1: We have

j/XðzÞx; ySj ¼ pxðtÞ
z � t

; pyðtÞ

 �

t

����
����

¼
Z
O0

pxðtÞ
z � t

pyðtÞ dm0ðtÞ þ
Z
O1

p0
xðtÞ

z � t
þ pxðtÞ
ðz � tÞ2

 !
p0

yðtÞ dm1ðtÞ
�����

�����
pC

Z
O0

jpxpyj dm0 þ C

Z
O1

jp0
xp0

yj dm1 þ C2

Z
O1

jpxp0
yj dm1

p 2C þ C2M:

(iii) If O0 and O1 are bounded then *GðDÞ is bounded and by lemma 1 of Section 2,
D is a bounded operator. &

In paper [2] it is proven that if Dk is bounded for some k40; then O0 and O1 are
bounded sets. This in particular implies that the converse of Theorem 1(iii) is also
true.
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2. Asymptotics and location of the zeroes

During the last decade several asymptotics for Sobolev orthonormal polynomials
were proven. In [7,8] the nth root asymptotics are obtained under the hypothesis of
sequentially dominated measures and the regularity of both measures m0; m1: In these
papers the location of the zeroes of the orthogonal polynomials was an important
step in the obtention of asymptotics. They also consider Sobolev products involving
derivatives of higher order.

In [10], asymptotics for orthogonal polynomials with respect to an arbitrary scalar
product were proven exploiting the relation of the polynomials with Hessenberg
matrices. More precisely, these asymptotics were obtained based on the applicability
of the finite sections method to Hessenberg matrices (Theorems 2 and 3 below). We
use the same approach here.

2.1. Finite sections method for Hessenberg matrices

In this subsection we review some facts about general Hessenberg matrices. We
refer to [10] for the proofs of the theorems stated here and for further development.

Let D ¼ ðdi;jÞNi;j¼0 be an infinite lower Hessenberg matrix; that is, di;j ¼ 0 for j4i þ
1 and di;iþ1a0 for iX0: We associate to D the sequence of polynomials defined by

p0 ¼ 1 and the recurrence relation (2). These polynomials form a basis of C½z	; thus
there is a unique scalar product /�; �SD : C½z	 
 C½z	-C defined by /pn; pmSD ¼
dn;m:

For example, if J is a real Jacobi matrix, then we know by Favard’s Theorem that
this scalar product has the form

/p; qSJ ¼
Z

N

�N

pðtÞqðtÞ dmðtÞ;

where m is a positive measure with finite moments and infinite support.
It is known that Stieltjes’ Theorem on the convergence of the Padé approximants

to the Markov function of m; is equivalent to the strong convergence of Rðz; JnÞ to
Rðz;JÞ in zAC\R: Here Jn are the truncated matrices of the Jacobi matrix J:
Theorem 2 below, extends this theorem to Hessenberg matrices. Since Stieltjes’
theorem only holds when J is determinate, we need a suitable generalization of this
concept.

Let D be Hessenberg matrix and define the sequence of associated polynomials of

kth kind (also called shifted polynomials) by

pk
n�kðzÞ ¼

pnðzÞ � pnðtÞ
z � t

; pk�1ðtÞ

 �

D;t

:

In the case of a scalar product in the real line this definition agrees with the standard
definition of associated polynomials of kth kind.
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We say that the matrix D is determinate ifXN
n;k¼0

jpk
n�kðzÞj

2 ¼ N ð6Þ

for at least one zAC: Again it can be proven that this definition agrees with the
standard one for complex Jacobi matrices and a theorem of invariabilty holds (see
[13] for the definition of determinate complex Jacobi matrix). In particular, if (6)

holds for some z0AC; then it holds for every zAC: Since pn
0ðzÞ ¼ d�1

n�1;n; we have that

if D is bounded, or more generally if
P

njdn�1;nj�2 ¼ N; then D is determinate.

Denote by Dn ¼ ðdi;jÞn�1
i;j¼0 the truncated matrix of size n 
 n and define the sets

YLðDÞ ¼ z : lim sup
nAL

jjRðz;DnÞjjoN

� 
;

ZLðDÞ ¼ fz : zAsðDnÞ; nALg;

ZN

L ðDÞ ¼ fz : (fznk
g; znk

AsðDnk
Þ; znk

-z; nkALg;

where LCf1; 2;yg is an infinite sequence of indices. If L ¼ f1; 2;yg we omit the
index and write simply YðDÞ; ZðDÞ; ZNðDÞ: The following inclusions are not hard
to proof

ZðDÞC *GðDÞ; ð *GðDÞÞcCYðDÞ:

If J is a Jacobi matrix we have seen in Section 1 that *GðJÞCCoðsuppðmÞÞCR; hence,
C\RCYðJÞ:

Now we can state the generalization of Stieltjes’ Theorem.

Theorem 2. Suppose D is determinate, then

ð *GðDÞÞcCYðDÞ ¼ fz : Rðz;DnÞ�-Rðz;DÞ�gCrðDÞ\ZNðDÞ: ð7Þ

For all xAl2 we have

lim
nAL

Rðz;DnÞ�x ¼ Rðz;DÞ�x

uniformly in compact subsets of YLðDÞ:

If D is bounded, or more generally, if dn�1;n is a bounded sequence, we can

improve Theorem 2.
Let rNðDÞ be the union of the connected components of rðDÞ which have

nonempty intersection with ð *GðDÞÞc: Notice that since the set *GðDÞ is convex, its
complement has at most two connected components. We denote by vðDn;KÞ the
number of eigenvalues of Dn in KCC:

Theorem 3. Suppose that *GðDÞaC and that the sequence fdn�1;ngnAL is bounded. We

have
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(i) For every compact set KCrNðDÞ there is an infinite subsequence L0CL such that

K\YL0 ðDÞ is at most finite.
(ii) rNðDÞ\ZN

L ðDÞCYLðDÞ:
(iii) For every KCrNðDÞ; the sequence fvðDn;KÞgnAL is uniformly bounded.

For example, if D is bounded and rðDÞ is connected, then YðDÞ ¼ rðDÞ\ZNðDÞ:
The next lemma lists some conditions equivalent to the boundedness of D:

Lemma 1. Let D be a Hessenberg matrix with associated scalar product

/�; �SD :C½z	 
 C½z	-C: The following statements are equivalent:

(i) j/zp; qSDjpC/p; pS
1
2
D/q; qS

1
2
D for some constant C and every p; qAC½z	:

(ii) j/zp; pSDjpC0/p; pSD for some constant C 0 and every pAC½z	:
(iii) *GðDÞ is bounded.
(iv) D is a bounded operator of l2:

Proof. The implication ðiÞ ) ðiiÞ is trivial. We have noticed in Section 1

that *GðDÞ is the numerical range of the operator of multiplication by z in C½z	;
thus ðiiÞ3ðiiiÞ: It is a known fact that the boundedness of the numerical
range of an operator implies its boundedness, thus (ii) implies that the
operator of multiplication by z is bounded in C½z	 with respect to the norm induced
by the scalar product. Taking into account (3), the rest of the implications
follow. &

2.2. Asymptotics

For the rest of the section /�; �SS is a Sobolev product as in (1) that satisfies (5).

We denote by fpnðzÞgNn¼0 the orthonormal polynomials and by D the Hessenberg

matrix associated to it.

Let us write ON for the union of the connected components of ðO0,O1Þc with

nonempty intersection with ðCoðO0,O1ÞÞc (there can be at most two connected
components).

Proposition 1. We have

(i) fz : dðz;CoðO0,O1ÞÞ4MÞgCYðDÞ:
(ii) If D is determinate then ONCrNðDÞ:
(iii) If O0;O1 are bounded or more generally dn�1;n is bounded then

ON\ZNðDÞCYðDÞCðO0,O1Þc
\ZNðDÞ:

Proof. (i) This follows from the inclusion ð *GðDÞÞcCYðDÞ and Theorem 1(i) of
Section 1.
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(ii) Suppose that D is determinate. By Theorem 2 ð *GðDÞÞcCrðDÞ: Hence, ON is a
connected open set with nonempty intersection with rðDÞ and where zI �D is
surjective (Theorem 1(ii)). It follows that ONCrðDÞ and from this that
ONCrNðDÞ:

(iii) This follows at once from Theorem 3(ii). &

Lemma 2. Let x; y; zArðDÞ\ðO0,O1Þ: We have

pi

z � t
; pj

D E
¼ /Rðz;DÞej; eiS

1

x � t
;

1

y � t


 �
¼ /Rðx;DÞRðy;DÞ�e0; e0S:

Let x; y; zArðDnÞ then

1

pnðzÞ
pnðzÞ � pnðtÞ

z � t
pi; pj


 �
¼ /Rðz;DnÞej; eiS

pnðxÞ � pnðtÞ
x � t

;
pnðyÞ � pnðtÞ

y � t


 �
¼ Rðx;DnÞRðy;DnÞ�e0; e0h i:

These formulas are part of a more general formalism that relates Hessenberg
matrices and their finite sections to quadrature formulas, two-variable Padé
approximants, and infinite dimensional continued fractions [9].

Proof. Recall that the matrix XðzÞ defined in the proof of Theorem 1(ii) is a
bounded right inverse of zI �D: Since now zArðDÞ; we must have XðzÞ ¼ Rðz;DÞ:
This implies the first formula. Define the infinite matrix ðY ðx; %yÞÞi;j ¼ / pi

x�t
;

pj

y�t
S:

Analogously as we did for XðzÞ; it can be checked that Y ðx; %yÞ is the matrix of a

bounded operator (use condition 5) and satisfies the matrix identity ðxI �
DÞYðx; %yÞðyI � DÞt ¼ I : An analysis of the operators associated to the matrices

contained in this identity yields Yðx; %yÞ ¼ Rðx;DÞRðy;DÞ�; thus we get the second
formula.

In order to prove the formulas in the second part of the lemma let us define the
n 
 n matrices XnðzÞ and Ynðx; %yÞ; whose entries are the left side of these formulas.
After some straightforward computations involving the orthogonality relations of

the polynomials, one checks that they satisfy ðzIn � DnÞXnðzÞ ¼ I and ðxIn �
DnÞYnðx; %yÞðyIn � DnÞt ¼ In: The last two formulas follow from this. &

The following lemma fills the gap in the proof of the formula for Yðx; %yÞ in
Lemma 2.
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Lemma 3. Let D1;D2 be Hessenberg matrices such that D1;D2 have bounded inverse

and Y is the matrix of a bounded operator Y: Suppose that D1Y %Dt
2 ¼ I : Then Y ¼

D�1
1 ðD�1

2 Þ�:

Proof. Denote by D�1
i ; i ¼ 1; 2; the matrices of the bounded operators D�1

i : Recall

that taking the adjoint of a bounded operator corresponds to taking the conjugate

transpose of its matrix. Let xAC0; then ðD2Þt
xAC0 and y ¼ Y %Dt

2x is well defined

since Y is bounded. We have yAl2 and D1y ¼ x; thus yAdomainðD1Þ and y ¼ D�1
1 x:

That is, Y %Dt
2x ¼ D�1

1 x; for every xAC0: This implies that Y %Dt
2 ¼ D�1

1 : Taking

conjugate transpose and repeating the same analysis we get %Yt ¼ D�1
1

t
D�1

2 : &

Theorem 4. Let /�; �SS be a Sobolev scalar product with determinate Hessenberg

matrix. We have

1

pnðzÞ

Z
pnðzÞ � pnðtÞ

z � t
dm0-

Z
1

z � t
dm0;

1

pnðzÞ

Z
pnðzÞ � pnðtÞ

z � t

� �0
dm1-�

Z
1

ðz � tÞ2
dm1

uniformly in compact subsets of YðDÞ and

1

pnðxÞpnðyÞ

Z
pnðxÞ � pnðtÞ

x � t

� �0
pnðyÞ � pnðtÞ

y � t

� �0
dm1-

Z
1

ðx � tÞ2ðy � tÞ2
dm1

uniformly in compact subsets of YðDÞ 
YðDÞ:
Under the conditions stated in Theorem 3, the same is true for subsequences of

indices.

Proof. The first two limits in the statement of the theorem follow taking i ¼ 0; j ¼
0; 1 in the formulas of Lemma 2 and applying Theorem 2. The third limit follows
readily from Lemma 2 and Theorem 2. &

2.3. Location of zeroes

Just like in the case of orthogonal polynomials in the real line, it can be checked
that we have (see [8] for a proof):

sðDnÞ ¼ fzAC : pnðzÞ ¼ 0g: ð8Þ

We see from this formula that the boundedness of D implies the boundedness of
the zeroes of pnðzÞ; because jjDnjjpjjDjj and the eigenvalues of Dn are contained in
the disk of radius jjDnjj centered in the origin. Alternatively, we can argue that if
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pnðzÞ ¼ ðz � aÞqðzÞ; then
/ðz � aÞq; qS ¼ 0 ) /zq; qS ¼ a/q; qS

and from Lemma 1(ii) we get jajoC0:
The boundedness of the zeroes of the orthonormal polynomials does not imply the

boundedness of D: We will discuss this phenomenon in Section 3.
By (8), the sets ZLðDÞ; ZN

L ðDÞ defined in 2.1 can be reinterpreted in terms of the

zeroes of the orthogonal polynomials. Theorem 1 together with the fact that

ZðDÞC *GðDÞ implies that

ZðDÞCfz : dðz;CoðO0,O1ÞÞpMg:

The following theorem generalizes a well-known theorem by H. Widom on the
behavior of the zeroes of orthonormal polynomials.

Theorem 5. Let /�; �SS be a Sobolev scalar product satisfying condition (5). Suppose

that CoðO0,O1ÞaC and fdn�1;ngnAL is bounded for some subsequence LCf0; 1;yg:
Then for every compact KCON the sequence fvðK; pnÞgnAL is bounded. In particular

this is true when O0;O1 are bounded and ON is the unbounded connected component of

ðO0,O1Þc: In this case L can be taken to be f0; 1; 2;yg:

Taking m1 ¼ 0 condition (5) is automatically statisfied and we get an extension of
Widom’s Theorem to measures of unbounded support.

Proof. Since fdn�1;ngL is bounded D is determinate. By Theorem 1(i), if

CoðO0,O1ÞaC then *GðDÞaC: Combining Theorem 1(ii) and Theorem 3(iii) we
get the first part of the theorem. If O0 and O1 are bounded then D is bounded, thus

fdn�1;ngNn¼0 is bounded. &

3. Sobolev products in the real line

In this section we assume that the measures m0 and m1 are supported in the real
line. Now the scalar product is

/p; qSS ¼
Z

N

�N

pðtÞqðtÞ dm0ðtÞ þ
Z

N

�N

p0ðtÞq0ðtÞ dm1ðtÞ: ð9Þ

3.1. Formal properties

The restriction O0;O1CR induces some formal properties in the scalar product.
Let us see how.

Let us associate to every Hermitian bilinear form f�; �g : C½z	 
 C½z	-C; a linear
functional L : C½x; %y	-C by

LðpðxÞqðyÞÞ ¼ fp; qg: ð10Þ
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If the bilinear form in the right side of (10) is of the form

fp; qg ¼
Z
R

pðtÞqðtÞ dmðtÞ; ð11Þ

with m a complex measure with finite moments (i.e. znAL1ðjmjÞ), then L satisfies
Lððx � %yÞð�ÞÞ ¼ 0: Conversely, it is proven in [12] that if L satisfies Lððx � %yÞð�ÞÞ ¼ 0
then it can be represented by a complex measure m like in (11). For bilinear forms like
(9), we have the next theorem.

Theorem 6. Let f�; �gS be a Hermitian bilinear form and L its associated linear

functional defined as in (10). Then Lððx � %yÞ3pðx; %yÞÞ ¼ 0 if and only if f�; �gS has the

form (9) with m0; m1 complex measures with finite moments.

Proof. Suppose that f�; �g is like (9). Then

Lðpðx; %yÞÞ ¼
Z
O0

pðt; tÞ dm0 þ
Z
O1

@2p

@x@ %y
ðt; tÞ dm1; ð12Þ

and thus Lððx � %yÞ3pðx; %yÞÞ ¼ 0: It also follows that

Lððx � %yÞ2pðx; %yÞÞ ¼ �2

Z
O1

pðt; tÞ dm1:

Conversely if L annihilates at the multiples of ðx � %yÞ3 then it can be checked that
the linear functionals

L1ðpðx; %yÞÞ ¼ � 1

2
Lððx � %yÞ2pðx; %yÞÞ; ð13Þ

L0ðpðx; %yÞÞ ¼ Lðpðx; %yÞÞ � L1
@2pðx; %yÞ
@x@ %y

� �
; ð14Þ

both annhilate at multiples of ðx � %yÞ: Thus, they have an integral representation of
the form (11), with m0; m1 complex measures of finite moments. Therefore, a
representation like (12) holds. &

Define the matrix of moments of the bilinear form f�; �g (or of the functional L) as

ðMÞi;j ¼ fzi; zjg ¼ Lðxi %yjÞ: Then,

Lððx � %yÞ3pðx; %yÞÞ ¼ 03ðS�Þ3M � 3ðS�Þ2MS þ 3S�MS2 � MS3 ¼ 0; ð15Þ

where the right side is understood as an identity of infinite matrices and ðSÞi;j ¼ diþ1;j

is the infinite shift matrix. Hence, (15) characterizes the moment matrices of bilinear
forms of the form (9) with m0; m1 complex measures.

When f�; �g is a scalar product, we have seen in Section 1 how to associate a
Hessenberg matrix to it. It can be proven that the matrix D is related to the
functional L through the identity (see [9]):

Lðpðx; %yÞpiðxÞpjðyÞÞ ¼ /PðD; %DtÞei; ejS: ð16Þ
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Using this equality we get that (15) is equivalent to

D3 � 3D2 %Dt þ 3Dð %DtÞ2 � ð %DtÞ3 ¼ 0: ð17Þ
Notice that the entries of D are the coefficients of a recurrence relation for the
orthonormal polynomials. So the last identity can be understood like a Favard’s
theorem for Sobolev products, since it characterizes the Hessenberg matrix of scalar
products of the form (9). Notice that in the scalar products of the form (9) we do not
assume that m0; m1 are positive measures; we only require that they induce a positive
scalar product.

The operators associated to infinite matrices M satisfying (15) have been studied
in papers such as [3], where they are called Hankel operators of third order. The
decomposition of L in the sum of L0 and L1 can be translated in terms of moment
matrices. Notice that the moment matrices of L0; L1 will be standard Hankel
matrices. This decomposition is proven in [1] and it is used to study the moment
problem of Sobolev scalar products.

3.2. Condition (5)

In the sequel we assume that /p; qSS is a Sobolev product of the form (9) with m0;

m1 positive measures supported in the real line. As before, we denote by fpngNn¼0 the

sequence of orthonormal polynomials and D the associated Hessenberg matrix.
Notice that since /p; qSSAR for every p; qAR½z	; the coefficients of pnðzÞ and the
entries of D are real numbers.

For an arbitrary Sobolev product the condition (5) can be understood in terms of

the moments of the functionals
R
�dm0 and

R
�dm1: But for Sobolev products in the

real line, (5) can be put in terms of the moments of the scalar product itself. The next
theorem shows equivalent formulations of (5) that hold in this case.

Theorem 7. The following statements are equivalent:
(i) /�; �SS satisfies (5).
(ii) If we write D ¼ Dr þ Di with Dr ¼ Dt

r and Di ¼ �Dt
i then Di and DDi are both

matrices of a bounded operator.

(iii) D2 � 2DDt þ ðDtÞ2 is the matrix of a bounded operator.

This theorem shows how restrictive (5) is, still it does not exclude cases where D is
unbounded.

Proof. ðiÞ ) ðiiÞ: Since Di ¼
1

2
ðD � DtÞ; we have

ðDiÞn;m ¼ 1

2
ð/zpn; pmS�/pn; zpmSÞ ¼ 1

2

Z
O1

ðpnp0
m � p0

npmÞ dm1;

and thus for pu ¼
P

i uipi; pv ¼
P

i vipi; with u; vAC0

/Diu; vS ¼ 1

2

Z
O1

ðpup0
v � p0

upvÞ dm1: ð18Þ
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Using (5) in the right side of (18) we see that Di is bounded. Taking pvðzÞ ¼ zpuðzÞ we
get

/DDiu; uS ¼ /Diu;D
tuS ¼ 1

2

Z
p2

u dm1;

and again by (5) DDi represents a bounded operator too.

ðiiÞ ) ðiiiÞ: D2 � 2DDt þ ðDtÞ2 ¼ 2ðDDi � DiD
tÞ: DDi is bounded by assumption

and DiD
t ¼ �ðDDiÞt; so DiD

t is bounded too.
ðiiiÞ ) ðiÞ: Let us put puðzÞ ¼

P
iuipiðzÞ: It follows from (13) and (16) thatZ

p2
u dm1 ¼Lððx � %yÞ2puðxÞpuðyÞÞ

¼/ðD2 � 2DDt þ ðDtÞ2Þu; uSpMjjujj2 ¼ M/pu; puS: &

Theorem 8. D is bounded if and only if the measures m0 and m1 have bounded support

and satisfy (5).

This theorem was first proven by Rodrı́guez in [11] under the assumption that O0;
O1 are bounded sets. This assumption was removed in paper [2]. Papers [2,11]
consider Sobolev products involving derivatives of arbitrary order; in [2] the
measures are supported in subsets of the complex plane. The proof given below is
independent of these results.

Proof. Theorem 1(iii) is one of the implications. Suppose that D is bounded. By
Theorem 7(iii) the measures m0; m1 satisfy (5). Since D is bounded D is determinate,
thus by Lemma 2 we have

/Rðz;DÞe0; e0S ¼
Z

1

z � t
dm0ðtÞ

/Rðz;DÞe0; e1S ¼ 1

z � t
; p1ðtÞ


 �
S

¼
Z

p1ðtÞ
z � t

dm0 �
1

d0;1

Z
1

ðz � tÞ2
dm1:

This implies that the Cauchy transforms of m0 and m1 are both analytic in a
neighborhood of N and therefore, they have bounded support (use Stieltjes’
inversion formula). &

We will not discuss the asymptotics for Sobolev orthogonal polynomials in the
real line satisfying (5). They are obtained as corollaries of the ones discussed in the
previous section. Notice that now we have

*GðDÞCfzAC : jIzjpMg;

and if D is determinate C\RCrðDÞ: Therefore, all of the asymptotics apply for
fzAC : jIzj4Mg whenever D is determinate (even though it could be unbounded).

We also have ON ¼ ðO0,O1Þc; so if O0 and O1 are bounded, or more generally if
dn�1;n is bounded, then the same asymptotics hold outside the set O0,O1,ZNðDÞ:
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3.3. Location of zeroes

For a standard scalar product in the real line like (11), it is well known that the
boundedness of the set ZðJÞ of zeroes of the orthonormal polynomials implies the
boundedness of the Jacobi operator J: As we mentioned in Section 2, this is not true
for general scalar products. For Sobolev products in the real line one can prove the
following theorem, which answers a question posed in [6].

Theorem 9. If a Sobolev product like (9) satisfies (5), then the boundedness of ZLðDÞ
for some infinite sequence of indices L is equivalent to the boundedness of D:

Proof. The implication ‘‘D bounded’’ ) ‘‘ZLðDÞ bounded’’ has been discussed
already. In order to prove the converse we use the following proposition (see [5,
Corollary 6.3.4]).

Proposition 2. Let A; D be n 
 n matrices with A normal and jjDjj ¼ d: Then the

spectrum of A þ D lies in
Sn

i¼1 BdðliÞ; where li are the eigenvalues of A and BdðliÞ are

open balls centered at li of radius d: If these balls are disjoint, there is at least one

eigenvalue of A þ D in each one of them.

If the Sobolev scalar product /�; �SS satisfies (5), then by Theorem 7 the matrices
Dn are perturbations of self-adjoint matrices ðDrÞn by a sequence of matrices of

uniformly bounded norm ðDiÞn: Proposition 2 yields the implication ZLðDÞ bounded

) ZðDrÞ bounded (prove the contrapositive). But since ðDrÞn is self-adjoint, its norm

is equal to its spectral radius, thus, the sequence fjjðDrÞnjjgnAL is uniformly bounded.

This in turn implies that Dr is the matrix of a bounded operator, and in virtue of
Theorem 7(ii), the same is true for D: &

What happens if we drop condition (5)? Then Theorem 9 no longer holds.

Example 3. Let

/p; qS ¼ pðaÞqðaÞ þ
Z 1

�1

p0ðtÞq0ðtÞ dt;

where dt denotes the Lebesgue measure. The orthonormal polynomials with respect

to this product are obviously l̂nþ1ðzÞ ¼
R z

a
lnðtÞ dt where lnðtÞ are the Legendre

polynomials. We choose ae½�1; 1	 in order to violate (5) (recall Example 2 of Section

1). The set of zeroes of the polynomials fl̂nðzÞgNn¼0 is bounded. This is a consequence

of the following theorem, proven in [8].

Theorem 10. Suppose that CoðO0Þ and CoðO1Þ are disjoint. Then the zeroes of p0
n are

simple and contained in CoðO0,O1Þ and the zeroes of pn lie in the disk centered at the

extreme point of CoðO1Þ furthest away from O0; and of radius equal to twice the

diameter of CoðO0,O1Þ:
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Some calculations show that

jet
nDnj2 ¼ /zl̂n; zl̂nS ¼

Z 1

�1

t2l2n�1ðtÞ dt þ l̂nð1Þ2 þ l̂nð�1Þ2:

Since the right side of this equality is unbounded it follows that D cannot be
bounded.

3.4. Determinacy and completeness

In [1] a Sobolev scalar product is said to be determinate if there is a unique pair of
positive measures m0; m1 such that (1) holds. The authors notice that, since the
functionals L0 and L1 in (13) can be put in terms of L (and the same for their
respective moment matrices), determinacy holds if and only if both L0 and L1 are
determinate. On the other hand, the definition of determinate Hessenberg matrix has
been given in Section 2.

Theorem 11. Suppose a Sobolev scalar product in the real line satisfies (5). Consider

the following propositions:
(i) The scalar product is determinate (as defined in [1]).

(ii)
P

N

n¼0 jpnðz0Þj2 ¼ N for some z0AC\R:

(iii) The associated Hessenberg matrix is determinate (as defined in Section 6).

(iv)
XN
n¼0

jdn�1;nj�2 ¼ N or
XN
n¼0

dn;n

dn�1;ndn;nþ1

����
����
2

¼ N:

We have

ðivÞ ) ðiiiÞ 3 ðiiÞ ) ðiÞ:

Proof. ðivÞ ) ðiiiÞ: Because pn
0ðzÞ ¼ d�1

n�1;n and pn
1ðzÞ ¼

z�dn;n

dn�1;ndn;nþ1
:

ðiiiÞ ) ðiiÞ: When D is determinate we have already noticed that
sðDÞCðO0,O1ÞCR: In particular, the point spectrum of D is contained in R:

ðiiÞ ) ðiiiÞ: If D is indeterminate thenX
n;k

jpk
n�kðzÞj

2oN;

for every zAC: Since p0
nðzÞ ¼ pnðzÞ; the implication follows.

ðiiiÞ ) ðiÞ: If D is determinate then the asymptotics of Theorem 4 hold in the set
fzAC : IzXMg: Thus, the Cauchy transforms of m0 and m1 are uniquely determined
by the moments of the scalar product and so are both measures. &

Let us define L
ð1Þ
2 ðm0; m1Þ ¼ f fAC1ðRÞ : fAL2ðm0Þ; f 0AL2ðm1Þg: For every

f ; gAL
ð1Þ
2 ðm0; m1Þ; the scalar product /f ; gSS given by (9) is well defined. Let
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W 1
2 ðm0; m1Þ be the completion of L

ð1Þ
2 ðm0; m1Þ with respect to the norm jj � jjS: If m1 ¼ 0

we put W 1
2 ðm0; 0Þ ¼ L2ðm0Þ:

Proposition 3. The linear subspace C½x	"spanf 1
x�a

: aAC\Rg is dense in W 1
2 ðm0; m1Þ:

Proof. Let us denote by H the closure of C½x	"spanf 1
x�a

: aAC\Rg in W 1
2 ðm0; m1Þ:

For every aAC\R; kAN; there are aiAC\R distinct, but close enough to a; such
that

1

ðx � aÞk
� 1

Pk
i¼1ðx � aiÞ

�����
�����oe;

1

ðx � aÞk

 !0

� 1

Pk
i¼1ðx � aiÞ

 !0�����
�����oe

for every xAR: Taking linear combinations, we see that H contains all rational
functions with poles off the real line.

Before continuing with the proof of Proposition 3, we need the following lemma.

Lemma 4. Let fAC1ðRÞ that satisfies

(1) limjxj-N xf ðxÞ ¼ 0:

(2) limjxj-N x3f 0ðxÞ ¼ 0:

For every e40; there is a rational function rðxÞ with poles off the real line such that

j f ðxÞ � rðxÞjoeð1 þ jxjÞ and j f 0ðxÞ � r0ðxÞjoeð1 þ jxjÞ for all xAR:

Proof. The proof follows the idea of Theorem II.4.2 in [4].

Let fAC1ðRÞ be as in the statement of the lemma and suppose additionally that
(3) f ðxÞ ¼ 0 for �1pxp1:
(4) f ðxÞ ¼ f ð�xÞ:
By (4), there is gAC1ð0; 1Þ such that f ðxÞ ¼ gð 1

x2þ1
Þ: Conditions (1)–(3) imply that

gAC1½0; 1	 (this can be checked after some straightforward computations). Choose a
polynomial pðxÞ such that jgðxÞ � pðxÞjoe=2 and jg0ðxÞ � p0ðxÞjoe=2 for all xA½0; 1	
(e.g. use Bernstein polynomials). We have

f ðxÞ � p
1

x2 þ 1

� �����
����oe=2; ð19Þ

f 0ðxÞ � p
1

x2 þ 1

� �� �0����
���� ¼ 2x

ðx2 þ 1Þ2

�����
����� g0 1

x2 þ 1

� �
� p0 1

x2 þ 1

� �����
����

o e=2: ð20Þ

Taking rðxÞ ¼ pð1=ðx2 þ 1ÞÞ proves the lemma for fAC1ðRÞ that satisfies conditions
(1)–(4).

Let fAC1ðRÞ satisfy (1)–(3). Write f ðxÞ ¼ f1ðxÞ þ xf2ðxÞ with f1ðxÞ ¼ ð f ðxÞ þ
f ð�xÞÞ=2 and f2ðxÞ ¼ ð f ðxÞ � f ð�xÞÞ=ð2xÞ: Functions f1 and f2 both satisfy
conditions (1)–(4) (this can be checked after some straightforward computations),
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so we can approximate f1 and f2 with rational functions r1; r2 like in (19) and (20).

Taking rðxÞ ¼ r1ðxÞ þ xr2ðxÞ we prove the lemma for fAC1ðRÞ that satisfies
conditions (1)–(3).

Let f be as in the statement of the lemma. Using a partition of unity we can write

f ¼ f1 þ f2 with f1; f2AC1ðRÞ such that supp f1C½1;NÞ and supp f2Cð�N; 2	:
Functions f1 and f2ð�x þ 3Þ satisfy conditions (1)–(3), thus the lemma is true for
each of them. This in turn implies that the lemma holds for f1 and f2 and, therefore,
the lemma holds for f too. &

Now we continue with the proof of Proposition 3.

Let fAL
ð1Þ
2 ðm0; m1Þ such that f ðxÞ ¼ OðxnÞ; f 0ðxÞ ¼ OðxnÞ for some nX0: Then

f ðxÞ=ðx2nþ4 þ 1Þ satisfies properties (1) and (2) of the last lemma. Applying the

lemma to f ðxÞ=ðx2nþ4 þ 1Þ we conclude that fAH:

Let fAL
ð1Þ
2 ðm0; m1Þ: Using a partition of unity we can write f ¼ f1 þ f2 with

f1; f2AL
ð1Þ
2 ðm0; m1Þ such that supp f1C½0;NÞ and supp f2Cð�N; 1	: It is enough to

prove that f1; f2AH:
In what follows we assume that supp fC½0;NÞ; the analysis for the case

supp fCð�N; 1	 is analogous. We have two possibilities, either

(i) (fangNn¼0 such that limn-N an ¼ N and limn-N j f ðanÞj ¼ loN;
or

(ii) (fangNn¼0 such that limn-þN an ¼ N and j f ðxÞjXj f ðanÞj for xXan:
Let en40 such that j f ðxÞjoj f ðanÞj þ 1 for xA½an; an þ en	: Take hnACNðRÞ such

that 0phnp1; hnðxÞ ¼ 1 for xA½0; an	; hnðxÞ ¼ 0 for xA½�en; an þ en	c and h0
nðxÞp0

for xX0: We approximate f in the Sobolev norm by the function gnðxÞ ¼R x

0 f 0ðtÞhnðtÞ dt:

By integration by parts we have

gnðxÞ ¼
Z x

0

f 0ðtÞhnðtÞ dt ¼ f ðxÞhnðxÞ �
Z x

0

f ðtÞh0
nðtÞ dt:

Let us write rnðxÞ ¼
R x

0 f ðtÞh0
nðtÞ dt: Since f ðxÞh0

nðxÞ ¼ 0 for xA½an; an þ en	c we get

that rnðxÞ ¼ 0 for xpan and

jrnðxÞjp�
Z anþen

an

j f ðtÞjh0
nðtÞ dtp sup

ðan;anþenÞ
j f joj f ðanÞj þ 1; for xXan;

hence rnðxÞ ¼ Oð1Þ:
Since rnðxÞ ¼ Oð1Þ; r0nðxÞ ¼ Oð1Þ; and f ðxÞhnðxÞ has compact support, we

conclude that gnAH: We also have

f ðxÞ � gnðxÞ ¼ f ðxÞð1 � hnðxÞÞ þ rnðxÞ;

f 0ðxÞ � g0
nðxÞ ¼ f 0ðxÞð1 � hnðxÞÞ:

By Lebesgue’s dominated convergence theorem f ðxÞð1 � hnðxÞÞ and f 0ðxÞð1 � hnðxÞÞ
tend to zero in L2ðm0Þ and L2ðm1Þ respectively when n-N: It only remains to prove
that rnðxÞ tends to zero in L2ðm0Þ when n-N:
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If (i) holds, thenZ
N

�N

jrnðxÞj2 dm0 ¼
Z

N

an

jrnðxÞj2 dm0oðj f ðanÞj þ 1Þ2m0ð½an;NÞÞ-0

when n-N:
If (ii) holds, thenZ

N

�N

jrnðxÞj2 dm0 ¼
Z

N

an

jrnðxÞj2 dm0o
Z

N

an

ðj f ðanÞj þ 1Þ2 dm0

p
Z

N

an

ðj f ðxÞj þ 1Þ2 dm0-0

when n-N: This completes the proof of Proposition 3. &

Theorem 12. Suppose a Sobolev scalar product in the real line satisfies (5) and has

determinate Hessenberg matrix. Then the system fpnðzÞgNn¼0 of orthonormal

polynomials is complete in W 1
2 ðm0; m1Þ:

The determinacy of D is not necessary. Even in the case of real Jacobi matrices (i.e.
m1 ¼ 0), completeness of the polynomials is known to hold for the Von Neumann
solutions of the moment problem.

Proof. Let us denote by H the closure of C½x	 in W 1
2 ðm0; m1Þ: We have proven in

Lemma 2 of Section 2 that

1

x � a

����
����

����
����
2

S

¼ jjRðx;DÞe0jj2 ¼
XN
i¼0

j/Rðx;DÞe0; eiSj2 ¼
XN
i¼0

1

x � a
; pi


 �����
����
2

for aAðO0,O1Þc: This is Parseval’s equality, thus 1
x�a

AH for aAC\R: Now the

theorem follows from Proposition 3. &

We end this section discussing an embedding of W 1
2 ðm0; m1Þ in a space of functions.

Let us write m ¼ m0 þ m1; and define the operator T :C½z	-L2ðmÞ; Tp ¼ p: Then,
condition (5) just says that T is bounded. If we assume that the Hessenberg matrix
of the Sobolev product is determinate, by the completeness of the polynomials, the

operator T is uniquely extended to a bounded operator in W 1
2 ðm0; m1Þ:

When is T : W 1
2 ðm0; m1Þ-L2ðmÞ injective? Assume that Tx ¼ 0; xa0: Then there

is a sequence of polynomials qn-x in W 1
2 ðm0; m1Þ and jjqnjj2;m-0: Since fqngNn¼0 is

convergent in W 1
2 ðm0; m1Þ; fq0

ng
N

n¼0 is a Cauchy sequence in L2ðm1Þ; hence it is

convergent to some fAL2ðm1Þ: We have jj f jj2;m1
¼ limjjq0njj2;m1

¼ limjjqnjjS ¼ jjxjjS;
thus fa0:

We have obtained that qn-0 in L2ðmÞ and q0
n-fa0 in L2ðm1Þ: This means that

the operator d
dt

: L2ðmÞ-L2ðm1Þ with domain C½x	 is not closable.

Suppose that d
dt

: L2ðmÞ-L2ðm1Þ with domain C½x	 is not closable. Then, there is a

sequence of polynomials fqngNn¼0 such that qn-0 in L2ðmÞ and q0
n-fa0 in L2ðm1Þ:
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fqng and fq0
ng are Cauchy sequences in L2ðm0Þ and L2ðm1Þ respectively. Hence, fqng

converges to some xAW 1
2 ðm0; m1Þ in the Sobolev norm and jjxjjS ¼ jj f jj2;m1

a0: We

have obtained the following:

Proposition 4. The operator T : W 1
2 ðm0; m1Þ-L2ðmÞ is injective if and only if

d
dt

: L2ðmÞ-L2ðm1Þ is closable.

4. Conclusions

This paper exemplifies a procedure to study scalar products in the linear space of
polynomials. This approach is particularly useful for less ‘‘standard’’ products other
than in the real line or the circle. The specific properties of a scalar product are used
to derive spectral information about the Hessenberg matrix associated to it. In that

process, we focus on the computation of sets like *GðDÞ; rðDÞ or less amenable sets
like YðDÞ; ZNðDÞ: Then we use the relation between the polynomials and the
Hessenberg matrix to write operator-theoretic results in terms of questions in
rational approximation.

We have discussed here some asymptotics and location of the zeroes of the
orthonormal polynomials. The same approach can be used to study less standard
objects, like the quadrature formulas or the two-variable Padé approximants
associated to a scalar product.

One can consider Sobolev products involving derivatives up to the kth order. The
Sobolev product takes the form:

/p; qS ¼
Xk

i¼0

pðkÞqðkÞ dmk:

Many of the results proven here have a straightforward generalization to this case.
For example, (15) and (17) become

Xk

i¼0

n

i

� �
ðStÞi

MSk�i ¼ 0;

Xk

i¼0

n

i

� �
Dið %DtÞk�i ¼ 0:

However, other questions like the discussion of Sobolev spaces deserve a careful
examination. The theorems of [10] on the convergence of the finite sections method
are also true for block Hessenberg matrices. Thus, in principle, the approach used
here can also be applied to matrix orthogonal polynomials.

The theorems of the last section suggest that, once condition (5) is assumed, the
Sobolev scalar product in the real line behaves similarly to a product obtained from a
positive linear functional. Two directions of work can be followed. One is to refine
the results proven here under (5). In particular, it is desirable to have a description of
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the set ZNðDÞ: For instance, under what conditions ZNðDÞCR? On the other hand,
we can drop (5). A result in this direction is Theorem 10, proven in [7].
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